Reg. No. :

Question Paper Code : 86622

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2021.

Second Semester

Civil Engineering

MA 1151 — MATHEMATICS –II

(Common to All Branches)

(Regulations 2008)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Find the Laplace transform of $\sin 3t \cos 2t$.
- 2. Find the inverse Laplace transform of $\frac{e^{-\pi s}}{s^2 + 1}$.
- 3. Find a, b, c such that $\vec{F} = (3x + y + az)\vec{i} + (bx + 2y z)\vec{j} + (3x + cy + 3z)\vec{k}$ is irrotational.
- 4. State Green's theorem in a plane.
- 5. If u + iv is analytic, show that v + iu is not an analytic.
- 6. Find the fixed points of the mapping $w = \frac{1+z}{1-z}$.
- 7. Evaluate $\int_{1}^{b} \int_{1}^{a} \frac{dx \, dy}{xy}.$ 8. Evaluate $\int_{0}^{3} \int_{0}^{2} \int_{0}^{1} dx \, dy \, dz.$

9. Identify and classify the singularity of $f(z) = \frac{\sin z}{z}$.

10. Find the residue of $f(z) = \frac{z+1}{(z-1)(z-2)}$ at z = 2.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

11. (a) (i) Using Laplace transform, Evaluate
$$\int_{0}^{\infty} e^{-t} \left(\frac{\cos at - \cos bt}{t} \right) dt$$
. (8)

(ii) Apply Laplace transform to solve $(D^3 - 3D^2 + 3D - 1)y = t^3e^t$ given that y(0) = 0, y'(0) = 0, y''(0) = -2. (8)

Or

(b) (i) Apply convolution theorem to evaluate
$$L^{-1} \frac{s^2}{(s^2 + a^2)(s^2 + b^2)}$$
. (8)

(ii) Use transform method to solve
$$\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x = e^t$$
 with $x(0) = 2$

and
$$\frac{dx}{dt} = -1$$
 at $t = 0$. (8)

12. (a) (i) Prove that
$$\vec{F} = (y^2 \cos x + z^3)\vec{i} + (2y \sin x - 4)\vec{j} + (3xz^2 + 2)\vec{k}$$
 is irrational and find its scalar potential. (6)

(ii) Verify Stoke's theorem for $\vec{F} = x^2 \vec{i} + xy \vec{j}$ in the square region in the xy-plane bounded by the lines x = 0, y = 0, x = a, y = a. (10)

Or

(b) (i) Prove that
$$\nabla^2 (r^n \vec{r}) = n(n+3) r^{n-2}$$
. (6)

(ii) Verify Gauss divergence theorem for

$$\vec{F} = (x^2 - yz)\vec{i} + (y^2 - zx)\vec{j} + (z^2 - xy)\vec{k} \quad \text{taken over} \quad \text{the}$$

rectangular parallelopiped $0 \le x \le a, \ 0 \le y \le b, \ 0 \le z \le c$. (10)

13. (a) (i) If
$$f(z) = u + iv$$
 is an analytic function of prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$
 $\left(\log|f(z)|\right) = 0.$ (8)

(ii) Find the image of the square whose vertices are z = 1 + i, 3 + i, 1 + 3i and 3 + 3i under the transformation $w = \frac{1}{z}$. (8)

(b) (i) Determine the analytic function
$$f(z) = u + iv$$
,
 $u = \frac{\sin 2x}{\cosh 2y - \cos 2x}$. (8)

(ii) Find the bilinear transformation which maps the points $z = \infty$, *i*, 0 into the points W = i, 0, ∞ . (8)

14. (a) (i) Evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{dx \, dy \, dz}{\sqrt{1-x^{2}-y^{2}-z^{2}}}.$$
 (8)

(ii) Find by double integration the area between the two parabolas $3y^2 = 25x$ and $5x^2 = 9y$. (8)

Or

(b) (i) Evaluate by changing to polars, the integral $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} (x^{2}y + y^{3}) dx dy.$ (8)

(ii) Evaluate
$$\iiint_R \frac{1}{x^2 + y^2 + z^2} dx dy dz$$
 throughout the volume of the sphere $x^2 + y^2 + z^2 = a^2$. (8)

15. (a) (i) Evaluate
$$\int_{0}^{\infty} \frac{dx}{(1+x^2)^2}$$
 using contour integration. (8)

(ii) Obtain Taylor's series for
$$f(z) = \frac{2z^3 + 1}{z(z+1)}$$
 about $z = i$. (8)

Or

(b) (i) Using contour integration prove that
$$\int_{0}^{\infty} \frac{x^{2}}{(x^{2}+1)(x^{2}+4)} dx = \frac{\pi}{6}.$$
 (8)

(ii) Obtain Laurent's series expansion for $f(z) = \frac{z^2 - 1}{(z+2)(z+3)}$ in the region z < |Z| < 3. (8)

86622