Reg. No. : \square

Question Paper Code : 86622

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2021.

Second Semester
Civil Engineering
MA 1151 - MATHEMATICS -II
(Common to All Branches)
(Regulations 2008)

Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - ($10 \times 2=20$ marks $)$

1. Find the Laplace transform of $\sin 3 t \cos 2 t$.
2. Find the inverse Laplace transform of $\frac{e^{-\pi s}}{s^{2}+1}$.
3. Find a, b, c such that $\vec{F}=(3 x+y+a z) \vec{i}+(b x+2 y-z) \vec{j}+(3 x+c y+3 z) \vec{k}$ is irrotational.
4. State Green's theorem in a plane.
5. If $u+i v$ is analytic, show that $v+i u$ is not an analytic.
6. Find the fixed points of the mapping $w=\frac{1+z}{1-z}$.
7. Evaluate $\int_{1}^{b} \int_{1}^{a} \frac{d x d y}{x y}$.
8. Evaluate $\int_{0}^{3} \int_{0}^{2} \int_{0}^{1} d x d y d z$.
9. Identify and classify the singularity of $f(z)=\frac{\sin z}{z}$.
10. Find the residue of $f(z)=\frac{z+1}{(z-1)(z-2)}$ at $z=2$.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Using Laplace transform, Evaluate $\int_{0}^{\infty} e^{-t}\left(\frac{\cos a t-\cos b t}{t}\right) d t$.
(ii) Apply Laplace transform to solve $\left(D^{3}-3 D^{2}+3 D-1\right) y=t^{3} e^{t}$ given that $y(0)=0, y^{\prime}(0)=0, y^{\prime \prime}(0)=-2$.

Or
(b) (i) Apply convolution theorem to evaluate $L^{-1} \frac{s^{2}}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}$.
(ii) Use transform method to solve $\frac{d^{2} x}{d t^{2}}-2 \frac{d x}{d t}+x=e^{t}$ with $x(0)=2$ and $\frac{d x}{d t}=-1$ at $t=0$.
12. (a) (i) Prove that $\vec{F}=\left(y^{2} \cos x+z^{3}\right) \vec{i}+(2 y \sin x-4) \vec{j}+\left(3 x z^{2}+2\right) \vec{k}$ is irrational and find its scalar potential.
(ii) Verify Stoke's theorem for $\vec{F}=x^{2} \vec{i}+x y \vec{j}$ in the square region in the $x y$-plane bounded by the lines $x=0, y=0, x=a, y=a$.

Or
(b) (i) Prove that $\nabla^{2}\left(r^{n} \vec{r}\right)=n(n+3) r^{n-2}$.
(ii) Verify Gauss divergence theorem for $\vec{F}=\left(x^{2}-y z\right) \vec{i}+\left(y^{2}-z x\right) \vec{j}+\left(z^{2}-x y\right) \vec{k} \quad$ taken over the rectangular parallelopiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$.
13. (a) (i) If $f(z)=u+i v$ is an analytic function of prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)$ $(\log |f(z)|)=0$.
(ii) Find the image of the square whose vertices are $z=1+i$, $3+i, 1+3 i$ and $3+3 i$ under the transformation $w=\frac{1}{z}$.

Or
(b) (i) Determine the analytic function $f(z)=u+i v$, $u=\frac{\sin 2 x}{\cosh 2 y-\cos 2 x}$.
(ii) Find the bilinear transformation which maps the points $z=\infty, i, 0$ into the points $W=i, 0, \infty$.
14. (a) (i) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{d x d y d z}{\sqrt{1-x^{2}-y^{2}-z^{2}}}$.
(ii) Find by double integration the area between the two parabolas $3 y^{2}=25 x$ and $5 x^{2}=9 y$.

Or
(b) (i) Evaluate by changing to polars, the integral $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}}\left(x^{2} y+y^{3}\right) d x d y$.
(ii) Evaluate $\iiint_{R} \frac{1}{x^{2}+y^{2}+z^{2}} d x d y d z$ throughout the volume of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
15. (a) (i) Evaluate $\int_{0}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{2}}$ using contour integration.
(ii) Obtain Taylor's series for $f(z)=\frac{2 z^{3}+1}{z(z+1)}$ about $z=i$.

Or
(b) (i) Using contour integration prove that $\int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x=\frac{\pi}{6}$.
(ii) Obtain Laurent's series expansion for $f(z)=\frac{z^{2}-1}{(z+2)(z+3)}$ in the region $z<|Z|<3$.

